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LETTER TO THE EDITOR 

A solvable non-separable quantum two-body problem 

M L Glasser?. 
Department of Physics, Clarkson University, Potsdam, New York 13699-5820, USA 

Received 5 May 1993 

Abshact. We present a non-separable one-dimensional two body problem. It describes 
the reflection of a two-particle bound state off a discontinuity aaoss which there is a 
steplike change in the interparticle potential. The model can be used as a primitive 
description of a pick-up or stripping reaciion at an interface and also describes the 
diffusion of a particle in a plane containing an extended finite depth trap. The reflection 
coefficient for the discontinuity is obtained in closed form. 

The only known quantum mechanical two-body problem, which is not separable in 
centre of mass coordinates, is the reflective half-plane barrier system [l]. It is 
presented in [l] in terms of the diffusion of a point mass in the x-y-plane with an 
infinitely repulsive barrier along the line x = y ,  x 2 0 ,  hut can be reformulated as a 
two-particle system having the Hamiltonian 

~ p ‘  pz 
%=- +--f O(x)o(X-w)  ZM, 2m 

where 

and U is a repulsive potential. As shown in [l], the problem can be mapped onto 
Sommerfield’s half-plane diffraction problem. 

The model presented in this note is also of the form (l), but with the variable 
strength attractive potential 

with A>O. It is similarly equivalent to the diffusion of a point  in^ the plane but the 
half-line barrier is now a finite depth extended trap. In this form the problem will be 
discussed elsewhere; here we treat it as a two-particle scattering problem. In a 
primitive way this model describes the possible decomposition of an atom as it passes 
from a vacuum into a medium where the atomic potential is screened. The method of 
solution is to map the problem onto the two-dimensional diffraction problem wn- 
sidered by Bazer and Karp [2]. 
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Cafculabon. By transforming to centre of mass coordinate R and relative coordinate 
r= X-x (total mass M and reduced massp), we amve at the two-particle Schrodinger 
equation 

For R>O we have the Schrodinger equation for the 'one-dimensional hydrogen 
atom'. By setting q ( R ,  r) = p(R)+(r) the equation separates giving 

M 
p" +- (E+  h2 E,)p=O ( 5 )  

The incoming and outgoing solutions to (5) are 

p,(R) = N exp( +. iKR) 

2M 
h2 KZ = - (E + Eo). 

There is only one bound state solution to (6), which is 

+(r) = a  e-+ 

Eo=jd212h2 ? C = p W i 2 .  

The incoming part of the solution to (4) with E a 0  is therefore 

Nexp[-iKR - ~ l r l ]  
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To obtain the remainder of the wavefunction, we note that (4) simplifies to the 
Helmholtz equation 

with the mixed boundary conditions 

By introducing new coordinates 
x = R  y = (p/M)”’r (13) 

& + Vyy+ kiy = 0 -m<x<m, Y>O 

our problem has been reformulated as the wave propagation problem 

vine= exp[-iKx -ay] 
where k;=2ME/h2, a=(M/p)”%, K=(ki+a2)’”. In this form it is identical to the 
problem of diffraction of a ground wave at the linear shoreline of a planar land-sea 
interface treated by Bazer and Karp 121. To apply their solution, we take and U as 
primary parameters subject to Im k,,>O, Imn>O (for technical reasons). Then 
Im K>O and we introduce the quantity 

6 = min[Im kc,, Im K ]  >O. (15) 
With minor changes in notation, the solution from equation (2.9) in [l] 

u-(k) dk 
exp[ik-y-] 

(k+ K )  (k2 - ki) exp[-iKx - ay] +- 

exp[-ikx-ay] -- u+(k) dk. 
W(X7 Y )  = - e x p [ i k x - y m ]  (16) 

“2‘ I -- ’ (k+ K )  (a - -) 
The branch of the square root is specified by ~ # x = o =  -iko, with hyperbolic 
branch cuts extending from kO(-ko) and asymptotic to the positive (negative) Im k 
axis. (This specification differs slightly from [2] and is chosen such that 
Re-30): The functions a”(k) enter into the Wiener-Hopf factorization 

where u(k) vanishes at k =  +K and is analytic and non-zero for -6<Imk<6. The 
factors o+(k) and U-(@ are analitic, non-zero and bounded in the upper and lower 
half-planes Im k >  -6, Im k<6, respectively. This factorization can be carried out 
explicitly [3], yielding [&I:- l o g [ l - ~ ( ~ ~ - k ~ ) - ” * ]  

u+(k)=exp - drl ImksO (18~) 
rl-k 
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where the path of integration in ( 1 8 ~ )  is indented below, and that in (1%) is indented 
above 11 = k, when k is real. 

An altemative representation for q(x,y) is found by closing the contour of 
integration in (16) into the upper or lower half-plane, as appropriate. For x<O, the 
contour can be closed into the lower half-plane, enclosing the simple pole k = -K and 
encircling the branch cnt. Since u-(-K) = l/u+(Q, the incident wave is cancelled by 
the residue term and we have 

Similarly, for x>O 

u2[u+(w exp[ifi-uy] 
2Kz ly(x,y)=exp[-ifi-uy]+ 

exp[ i -y=I  dk x>o,y>o (20) ( k + K ) [ ~ - m t ]  

where in (19) and (20) the path of integration encircles the appropriate branch cut. 

Reflection coeficierzf. The reflection amplitude E can be read immediately from (20): 

where 

with the path of integration along the real axis indented above -K, -ko and below h, 
K, which are taken to be real and positive with O<k,<K. 

The integral in (22) is easily transformed into G(ko/K) where 
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with the path of integration indented below z= 1, U. The path of integration is next 
moved to the imaginary axis by setting z = -iy, where 

One easily finds the special value 

and the derivative 

dY dY 
(y'+l)(yZ+u2) ( y ' + l ) V j z 2  

G'(u)= -- 

- -- 1 +--log( I U  
l + G  3 

- 
2(1+u) 2nl-u2 i 7 i 3  . 

By integrating (26) we obtain , .  . .  

(1;) zi i log (I+vTF) - \ r s  dl G(u)=-flog - --+- 8 2n ,I-? 1- 1-t2 

and by the substitution s =- the integral in (27) reduces to simply 

which may be expressed in terms of the Euler dilogarithm [4]. Therefore, 

G ( u ) = - ~ l o g  (tGU) - - - [ L i 2 ( ~ ) - L i 2 ( - ~ ) ] .  ; 
It follows now from (22) that ( U = ~ ~ / K = [ E / ( E + E ~ ) ] " ~ )  

and the reflection coefficient is 

which depends only on the dimensionless energy EIE,. 

Discussion. The reflection coefficient for the model presented in (1-3) has been 
calculated exactly and shown to depend only on the dimensionless energy E = E/Eo. As 
E+O there is total reflection, while R drops off monotonically as E increases and 
decays asymoptotically as ( 2 ~ ) ~ ' .  The much simpler case of a single electron scattering 
from a delta potential at fixed distance from a potential step was treated by Lapidus 
[5], who found R - ( ~ E ) - ' .  
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Examining equations (19) and (20) for the two-particle wavefunction on either side 
of the discontinuity shows that there is damped oscillatory, square integrable behav- 
iour contained in the contour integrals. This interesting feature must arise from 
quantum interference between the bound state and free particle channels, and does 
not appear to have been investigated previously. An asymptotic and numerical study 
of these terms is under way [6]. 

Equations (1)-(3) appear to represent the simplest non-trivial two body problem 
in an external potential and it is surprising to find how difficult it is to solve and the 
complexity of the results. Nevertheless, there are a number of ways by which it could 
be modified, yet remain tractible. For example, the inclusion of a second potential 
step might serve as a model for an exciton in a quantum weU. 

The author thanks Professor J Boersma for pointing out how the original calculation 
could be reformulated in terms of [2]. 
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